Wireless Network Coding

Sachin Katti Assistant Professor EE & CS, Stanford University

What is Network Coding?

Generalization of store and forward networks

Routers mix/code packets' content before forwarding

The Butterfly Example

Source wants to multicasts *a* and *b* to both destinations Link capacity is 1 message/second

The Butterfly Example

Source wants to multicasts *a* and *b* to both destinations Link capacity is 1 message/second

What is Network Coding Good for?

Throughput

Improves Multicast Throughput

Without network coding, multicast throughput is 1.5 With network coding, multicast throughput is 2

Improves Unicast Throughput

s1 wants to send *a* to d1, and s2 wants to send *b* to d2

Improves Unicast Throughput

s1 wants to send *a* to d1, and s2 wants to send *b* to d2

Without net-coding, avg. per flow throughput is 0.5 With net-coding, avg. per-flow throughput is 1

What is Network Coding Good for?

- Throughput
- Robustness

Robustness to Packet Loss

- With source coding, the maximum rate is (1- ε)(1- ε)
 E.g., ε=0.05; of each 100 packets 10% should be redundancy → data rate = 0.9
- With network coding, the maximum rate is (1ε)

Robustness to Packet Loss

Each link has a loss rate of $\boldsymbol{\epsilon}$

With source coding, the maximum rate is (1- ε)(1- ε)
 E.g., ε=0.05; of each 100 packets 10% should be redundancy → data rate = 0.9

• With network coding, the maximum rate is $(1 - \varepsilon)$

 \sim E.g., ε= 0.05; of each 100 packets only 5% should be redundancy →data rate =0.95

Robustness to Randomness Coupon Collector Problem

Problem: n unique coupons; a collector samples randomly

Without coding

Need a sample size of about *nlog(n)* to collect all unique coupons

With random coding

Need n samples to collect all unique coupons

$$Y_{1} = c_{1} + 3 c_{2} + 4 c_{3}$$

$$Y_{2} = 5 c_{1} + c_{2} + 7c_{3}$$

$$Y_{3} = c_{1} + c_{2}$$

Two Types of Network Coding

Inter-flow

- Codes packets across connections
- Increases Throughput
- Mainly Unicast

Intra-flow

- Codes packets within a connection
- Robustness to packet loss
- Mainly multicast

COPE

An Example of Inter-flow Network Coding

Increased Demands for Wireless Networks

But, wireless networks struggle with low throughput, particularly in dense deployments

Can network coding help?

Current Approach

Current Approach → Requires 4 transmissions But can we do better?

Network Coding Increases Throughput

Beyond Duplex Communications

Two communications that intersect at a router

Generalizes to arbitrary networks

Generalizes to arbitrary networks

Differences from Traditional Wireless Networks

Embrace the broadcast nature of wireless

Dispose of the point-to-point abstraction

■ Routers mix bytes across packets, then forward them → Network Coding

Exploit Broadcast - Snoop

Nodes snoop on all packets

A node stores all heard packets for a limited time

Exploit Broadcast - Snoop

Nodes snoop on all packets

A node stores all heard packets for a limited time

Routers Code Packets

To send packet p to neighbor A, XOR p with packets already known to A

Thus, A can decode

But how can multiple neighbors benefit from a single transmission?

Which Packets to Code Together?

Arrows show next-hop

Which Packets to Code Together?

Bad Coding Only one neighbor benefits from one transmission

Good Coding Two neighbors benefit from one transmission!

XOR n packets together iff the next hop of each packet already has the other *n-1* packets apart from the one it wants

- Router has *n* packets, each node has a different subset of these packets and needs a specific subset
- Minimize number of transmissions subject to coding constraints

Solution Intuition

Virtual graph: Each packet is a vertex, edge if corresponding packets can be coded together

Solution Intuition

Virtual graph: Each packet is a vertex, edge if corresponding packets can be coded together

Coded packet → Clique in virtual graph Minimizing no. of transmissions → Clique partitioning in virtual graph

Solution Intuition

- COPE's coding problem → Clique partitioning in virtual graph
- Clique partitioning
 → Graph coloring in complementary
 graph
- NP hard, heuristic solution in paper

COPE's Characteristics

COPE is a forwarding mechanism

It sits transparently between IP and MAC

- Routing is unmodified (i.e., shortest path)
- Opportunistic → Code packets if possible, if not forward without coding
- Does not delay packets

Performance

COPE is implemented in Linux

Alice-and-Bob Experiment

3 transmissions instead of 4 \rightarrow Throughput gain is 4/3 = 1.33

Results of the Alice-and-Bob

Ratio of Throughput with COPE to Current Approach

COPE almost doubles the throughput

Why More Gain than 1.33?

COPE alleviates the mismatch between MAC's capacity allocation and the congestion at a node

COPE alleviates the mismatch between MAC's allocation and the congestion at a node

Coding Gain	Coding+MAC Gain
Reduction in #Transmissions	Improvement of Draining Rate at Bottlenecks
In Alice-Bob scenario, Coding Gain is 4/3 = 1.33	In Alice-Bob scenario, Coding+MAC Gain is 2
Nodes not backlogged	Nodes backlogged
Can show that	
Coding gain is bounded by 2	Coding+MAC gain can be infinite

Extension: Coding-Aware Routing [SRB07]

6 transmissions to send two packets No coding opportunities since flows take different routes

Extension: Coding-Aware Routing [SRB07]

Pick routes that enable coding

5 transmissions instead of 6

Modified routing that maximizes throughput given coding

Can We Do Better?

Current approach requires 4 time slots Network coding requires 3 time slots How about 2 time slots? Instead of router mixing packets...

Exploit that the wireless channel naturally mixes signals when packets interfere!

Analog Network Coding

- Alice and Bob send simultaneously
- Router receives the sum of the two signals (plus time and phase shifts)

2 Time Slots \rightarrow Even Higher Throughput

Challenges

Interfered signal is not really the sum Output Channel distort signal

- Two signals are never synchronized
- •It is not A(t) + B(t) but $f_1(A(t)) + f_2(B(t-T))$

- Alice uses non-interfering bits from her signal to estimate her channel
- Alice compensates for her interfering signal

We exploit the lack of synchronization!

Design & Implementation

ANC works with any modulation scheme

Accurate channel, frequency & sampling offset estimation

Iterative algorithms to deal with interference

Linear decoding complexity

Implemented in software radios (GMSK, BPSK, QPSK, ...)

Primer on Modulation

• Digital version of wireless signals \rightarrow Complex samples

Primer on Channel Effects

Attenuation

N2 and N1 are attenuated by the same amount

Primer on Channel Effects

- Attenuation
- Rotation

Primer on Channel Effects

Attenuation

To decode, compute angle between received complex numbers Angle (N2, N1) = 90 degrees \rightarrow Bit "1" was transmitted

So, How Does Alice Decode? Signal No No $\stackrel{\text{Interference}}{\longleftrightarrow}$ Interference $\overleftarrow{}$ Time Alice's Bob's Signal

Signa

- Small uninterfered part at the start
- Decodes uninterfered part via standard GMSK demc
- Once interference starts, Alice changes decoding algorithm

• What did Alice send?

- What did Alice send?
- What did Bob send?

- What did Alice send?
- What did Bob send?

• What is Interference \rightarrow Complex addition \times_{11}

Solutions for interfered complex sample

Interfered complex no: $X = \alpha e^{j\theta} + \beta e^{j\phi}$ Lemma:

"If X is an interfered complex number satisfying the above equation, then the pair $[\theta, \varphi]$ takes one of the following two values:

$$\theta = \arg(X(\alpha + \beta D \pm j\beta \sqrt{1 - D^2}))$$

$$\varphi = \arg(X(\beta + \alpha D \mp j\alpha \sqrt{1 - D^2}))$$

$$\boldsymbol{D} = \frac{|\boldsymbol{X}|^2 - \boldsymbol{\alpha}^2 - \boldsymbol{\beta}^2}{2\boldsymbol{\alpha}\boldsymbol{\beta}}$$

where

Two solutions for each interfered complex sample!

Two solutions for each interfered complex

Four possible angles!

Pick the correct angle \rightarrow +90 degrees

Pick the correct angle \rightarrow +90 degrees

Dictates solution for Bob's complex samples!

 Alice finds angle between B1 and B2 and decodes

Decoding Algorithm - Decoding interference

- Decode rest of the interfered part using this algorithm
- Decode final uninterfered part from Bob via standard GMSK demodulation
- Bob runs the same algorithm backwards

Generalizes to other topologies

Chain (even with single flow)

Other COPE topologies

- Network coding allows routers to mix packet content before forwarding
- Inter-flow network coding mixes packets across flows
 Exploits broadcast
 Provides in-network compression
 Exploits strategic collisions
- Prototypes that yield large throughput increases